

April 2012

FSAR001 AC-DC Linear Regulator

Features

- High Output Voltage Accuracy: 2%
- Output Voltage: 5V
- Low Ground Current: < 2.0mA</p>
- Ultra-Fast Line and Load Transient Response
- Hysteretic Thermal and Current-Limit Protections
- Over-Voltage and Under-Voltage Protections
- Ultra-Low Power Dissipation with No Load
- Universal Input Range: 80~265V_{RMS}
- No Inductor Required
- Low Components and Cost

Applications

- Non-Isolation AC/DC Converter
- Home Appliance

Description

FSAR001 is designed to replace capacitor-fed ("cap dropper") non-isolated power supplies, offering better high-power conversion performance and high-energy efficiency than a cap dropper solution. The appliance needs no inductor, uses few components, and offers lower cost.

FSAR001 integrates a 600V high-power device, startup controller, voltage control circuit, synchronous circuit, low dropout regulator, over-temperature protector, over-voltage protector, under-voltage protector, and current-limit circuit onto a monolithic IC.

Ordering Information

Part Number	Operating Ambient Temperature Range	Output Voltage	Maximum Load	Package	Packing Method
FSAR001BNY	-40°C to +105°C	5V	35mA	DIP-8	Tube

FSAR001 • Rev. 1.0.1

5

6 7

8

HV Start

600V Input

VST

VIN

500V power device startup connection.

600V power device input connection

synchronous signal.

FSAR001 — AC-DC Linear Regulator

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit	
V _{IN}	Input Voltage of VIN Pin			600	V
V _{ST}	Input Voltage of VST Pin			500	V
V _{DET}	Input Voltage of DET Pin			7	V
V _{DD}	Input Voltage of VDD Pin		30	V	
V _{OUT}	Input Voltage of OUT Pin			30	V
PD	Power Dissipation (T_A \leq 50°C)			1.15	W
Θ _{JA}	Thermal Resistance (Junction to Air)			95	°C/W
TJ	Operating Junction Temperature		-40	+125	°C
T _{STG}	Storage Temperature Range		-55	+150	°C
TL	Lead Temperature (Wave Soldering or IR, 10 Seconds)			260	°C
ESD	Human Body Model, JEDEC:JESD22-A114 All Pins Except HV			6	K)/
ESD	Charged Device Model, JEDEC:JESD22-C101	All Pins Except HV Pin ⁽³⁾		2	ΓXV

Notes:

1. All voltage values, except differential voltages, are given with respect to the network ground terminal.

2. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.

3. ESD with HV pin CDM=1000V and HBM=500V.

Recommended Operating Conditions

Symbol	Parameter	Min.	Max.	Unit
V _{IN}	600V High-Voltage Input		600	V
V _{ST}	500V High-Voltage Startup		500	V
T _A	Operating Ambient Temperature	-40	+105	°C

Note:

4. For proper operation.

FSAR001 — AC-DC Linear Regulator

Electrical Characteristics

 V_{IN} =open, V_{DD} = V_{OUT} +1 V, C_{VDD} =470 μ F/ 25 V, C_{OUT} =10 μ F/ 16 V, I_{OUT} =1 mA, T_A =25°C, unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Uni t
VDD Sectio	n					1
V _{TH-ON}	Turn-On Threshold Voltage (V _{OUT} =5V)	VDD Pin	9	10	11	V
V_{TH-OFF}	Turn-off Voltage (V _{OUT} =5V)	VDD Pin	3	4	5	V
I _{DD-ST}	Startup Current of VDD Pin	VDD Pin		10	30	μA
I _{DD-OP}	Operating Supply Current	I _{OUT} =1mA	1.0	1.5	2.0	mA
V_{DD-OVP}	Threshold of V _{DD} OVP		V _{OUT} +3.0	V _{OUT} +3.5	V _{OUT} +4.0	V
$V_{\text{DD-OVPHYS}}$	Threshold of V_{DD} OVP Hysteresis		0.8	1.0	1.2	V
tV_{DD-OVP}	Time Delay of V _{DD} OVP			1.5		μs
VIN Section	n					
V _{VIN}	Supply Voltage				600	V
VST Sectio	n					
I _{ST}	Supply Current from VST Pin	V_{AC} =90V (V_{DC} =120V), V_{DD} =10µF	2.50	3.75	5.00	mA
I _{ST-LC}	Supply Current After Startup	HV=500V, $V_{DD}=V_{DD}$ - _{OFF} +1V		1	20	μA
DET Sectio	n					
$V_{\text{DET}_{MAX}}$	Turn-Off Synchronous Voltage		0.90	0.95	1.00	V
V _{DET_MAXHYS}	Turn-Off Synchronous Voltage Hysteresis		0.08	0.10	0.12	V
V _{DET MIN}	Turn-On Synchronous Voltage		0.08	0.14	0.20	V
V _{DET MINHYS}	Turn-Off Synchronous Voltage Hysteresis		0.08	0.14	0.20	V
I _{DET}	DET Current		0.1		μA	
VOUT Sect	ion					
UVP _{Vout}	Output Pin Under-Voltage Protection		-10.0	-12.5	-15.0	%
V _{ACC}	Output Voltage Accuracy		-2	6	2	%
LR	Load Regulation	I _{OUT} =1mA to Maximum	-2		2	%
$\Delta V_{OUT (VIN)}$	Line Regulation dV _{OUT} /dV _{IN}		-0.2		0.2	%/V
ILIM	Current Limit	V _{DD} =V _{OUT} +3V	110	140	170	mA
V _{Drop}	Dropout Voltage (V _{OUT} =5V)	I _{OUT} =35mA	0.3	0.4	0.5	V
I _G	Ground Pin Current ⁽⁵⁾	Output Current = Maximum Load		1.5	2.0	mA
tD _{OUT-ST}	Output Voltage Rising Time (V_{OUT} =12V) V_{DD} to V_{OUT}	V _{OUT} =0%~90% C _{OUT} =1µF	40	50	60	μs
PSPP	Ripple Rejection ⁽⁶⁾	f= 50Hz, C_{OUT} =10µF, I _{OUT} =35mA		60		dB
		f =100Hz, C _{OUT} =10µF, I _{OUT} =35mA		00		UD
T _{OTP}	Protection Junction Temperature ⁽⁶⁾			150		°C
T _{HYS}	Restart Junction Temperature ⁽⁶⁾			T _{OTP} -40		°C

Notes:

5. For V_{Drop} =1V of V_{OUT} =3.3V version, the test condition is modified to V_{DD} = V_{OUT} +1.5V.

6. Guaranteed by design.

 V_{AC} = 264V/50Hz, V_{OUT} = 5V, I_{OUT} =35mA~40mA, C_{VDD} = 470 μ F, C_{OUT} = 10 μ F, T_A = 25 $^{\circ}$ C, unless otherwise noted.

7. Load Transient

Figure 9. Ground Pin Current vs. Load Current

Figure 8. Region of Stable Cout ESR vs. Load Curre

Typical Performance Characteristics (Continued) 11 6 5 10 Ξ4 V_{DD-ON} (V) V_{DD-OFF} 9 8 2 7 1 -40 -30 -15 0 25 50 75 85 100 125 -40 -30 -15 0 25 50 75 85 100 125 Temperature (°C) Temperature (°C) Figure 11. **Turn-On Threshold Voltage** Figure 12. **Turn-Off Threshold Voltage** vs. Temperature vs. Temperature 10 9 9 8 VVDD-OVPH (V) VVDD-OVPL (V) 7 8 7 6 6 5 5 4 -30 -15 0 25 50 75 85 100 125 -30 25 50 75 100 125 -40 -40 -15 0 85 Temperature (°C) Temperature (°C) Figure 13. Threshold of V_{DD} OVP HIGH vs. Figure 14. Threshold of V_{DD} OVP LOW vs. Temperature Temperature 6 5.5 5.5 5 Output Voltage (V) 5 Vour (V) 4.5 4.5 4 4 3.5 3.5 3 3 -40 -30 -15 25 0 50 75 85 100 125 40 0 10 30 50 20 Temperature (°C) Load Current (mA) Figure 15. Output Voltage vs. Temperature Figure 16. Output Voltage vs. Output Load

Functional Description

The FSAR001 is a compact, inductor-free, and highly monolithic AC/DC linear converter housed in 8-lead DIP packages and designed for non-isolated AC/DC converter and home appliances. The FSAR001 provides universal AC voltage input from $80V_{RMS}$ to $265V_{RMS}$ and fixed-DC output voltage with current limiter for the non-isolated AC/DC converter operating safety and stability. The FSAR001 integrates many protection functions, including output current limiter (I_{LIMIT}), output undervoltage protection (UVP), over-temperature protector (OTP), V_{DD} over-voltage protection (OVP), and AC synchronous signal detect function (V_{DET}).

As the FSAR001 operates in a typical application, the startup current flows through the startup pin (V_{ST}) and charges V_{DD} capacitor. When the voltage of V_{DD} is larger than $V_{TH ON}$, the FSAR001 is turned on. After one AC synchronous signal, the LDO is turned on and creates output voltage (V_{OUT}). At steady state, the energy of V_{DD} capacitor decreases because of the chip operation and load power dissipation. The behavior is shown in Figure 17 and the energy is recharged during conduction angle interval (settled by R3 and R4) and under OVP function limitation (V_{DD-OVPH}). With a view to increasing LDO efficiency and system stability, FSAR001 sets the V_{DD} OVP voltage at 8.5V for 5V LDO regulator. The V_{DD} capacitor recovery angle controls below $50V_{\text{RMS}}$ settled by AC synchronous signal (DET sense voltage), detailed in the following sections.

VIN Max Conduction angle (set by R3&R4) IN CVDDmax VDD(capacitance)

Figure 17. Operating Principle

Startup Current

During FSAR001 startup, the startup current through the rectifier and V_{ST} pin charges the V_{DD} capacitor with maximum start current of V_{ST} pin of 3.75mA and the synchronous current controlled by R3 (1M Ω) and R4 (13k Ω), shown in Figure 1. The FSAR001 remains off until the V_{DD} voltage is larger than V_{TH-ON} and the output voltage is created at the same time. After the FSAR001 turns on, the V_{ST} function is disabled by the control loop. The major energy path changes from V_{ST} pin from the inner power MOSFET MV (V_{IN}).

OUT Pin Under-Voltage Protection

When the output power is larger than the maximum handling power of FSAR001, the condition causes the output voltage to drop. Until the output voltage is less than output nominal voltage -12% (5V - 0.625V = 4.375V), the UVP function disables the LDO stage and waits until the next AC synchronous signal to restart the FSAR001 automatically.

Current Limit

The FSAR001 includes a current limiter (ILIMIT) for safe LDO operation. The limiter monitors the loading current and directly controls the output delivery current of LDO. The typical limited current set is 140mA to avoid the output shorted to ground for an indefinite amount of time without damaging the part. At over-current operation, the I_{LIMIT} function limits the maximum output current and causes the unregulated output voltage to drop until the UVP function occurs.

Over-Temperature Protection

The FSAR001 operates in highly converting ratio. The thermal energy of FSAR001 is generated by the inner converting power of the MOSFET. When the junction temperature (T_J) exceeds 150°C, the OTP function disables LDO stage and waits for the next AC synchronous signal to restart. The over-temperature hysteresis range is 40°C. After startup, the OTP function monitors the junction temperature. When junction temperature decreases to the $(T_{OTP-THYS})$, the OTP function enables the signal and allows LDO turn on. If not, OTP function keeps the output function disabled and continuously monitors the junction temperature. The OTP function is designed to protect against abnormal conditions and over-power operation.

DET Pin Selection

The DET pin connects to the commutated AC bus. It sinks commutated AC voltage waveform used to provide the AC synchronous signal and to set the V_{DD} capacitor recovery conduction angle. For synchronous signal function, the AC synchronous signal used to enable output voltage of the LDO and to trigger the output stage protection with UVP and OTP. To limit the recoveryconduction angle of the V_{DD} capacitor, the DET pin sense voltage (V_{DET}) is set between 0.14V ~0.95V. During the sense-voltage range of the DET pin, the V_{DD} capacitor can be charged by the power MOSFET until the OVP function is operating in every synchronous cycle. As shown in Figure 18, the DET pin sense voltage limits the charge time of t0~t1 and t2~ts/2 settled by R3 and R4. The maximum commutated input voltage of FSAR001 can be determined by the following equation with the maximum DET sense voltage defined:

EQ 2

VDD Pin Over-Voltage Protection

After startup, FSAR001 turns on the OVP function. During conduction angle interval, the V_{DD} voltage has two kinds of behavior. One is that if the V_{DD} capacitor recharges to OVP trigger point (8.5V for 5V version), the FSAR001 turns off the power MOSFET to limit the maximum V_{DD} voltage. The other is that if the voltage of V_{DD} cannot recharge to the OVP level during the conduction interval, the power MOSFET is turned off by AC synchronous signal and continuously recharges V_{DD} capacitor at next duration. Using this technique, energy is drawn from the AC mains only during the low-voltage portions of each positive half cycle, reducing the

dissipation in the first stage. During the power MOSFET turn-on, the current provided by the commutated AC voltage is used to supply the loads and to charge the V_{DD} capacitor. In this way, when the power MOSFET switches off, the loads receive the required currents by the capacitor discharge. For this reason, it is important to properly set the conduction angle.

For the V_{DD} capacitor selection, during conduction angle interval; the energy is drawn from commutated AC bus, which not only provides the output requirement but also recharges the V_{DD} capacitor to OVP level. Outside of conduction angle, the V_{DD} capacitor supplies the whole system requirement. The V_{DD} capacitor can be reduced by maximum loading power. The capacitor is evaluated by Equation 2; the selection chart is shown in Figure 19.

 $C_{VDD} = \frac{I_{LOAD} \times 10m}{1}, (unit = F)$

Bill of Materials (BOM)

Designator Part Type		Designator	Part Type
F1	FUSE 3A/250V	D2	1N4007
C1	1nF/50V	R1	1MΩ 1/4W
C2	470µF/25V	R2	10Ω 2W
C3	10µF/50V	R3	1KΩ 1/2W
D1	1N4007	R4	13KΩ 1/4W

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <u>http://www.fairchildsemi.com/packaging/</u>.

FAIRCHILD SEMICONDUCTOR TRADEMARKS F-PFS™ PowerTrench® The Power Franchise® 2Cool™ FRFET PowerXS™ wer Global Power ResourceSM Programmable Active Droop™ franchis GreenBridge™ QFET TinyBoost™ QSTM Green FPS™ TinyBuck™ Green FPS™ e-Series™ Quiet Series™ TinyCalc™ RapidConfigure™ Gmax™ TinyLogic® GTOM \sim **TINYOPTO™** IntelliMAX[™] Saving our world, 1mW/W/kW at a time™ **TinyPower™ ISOPLANAR™** Current Transfer Logic™ SignalWise TinvPWM™ Making Small Speakers Sound Louder TinyWire™ SmartMax™ and Better SMART START Tran SiC™ MegaBuck™ TriFault Detect™ Solutions for Your Success™ **MICROCOUPLER™** TRUECURRENT®* SPM® MicroFET* **STEALTH™** µSerDes™ Ð MicroPak™ SuperFET MicroPak2™ SuperSOT™-3 Des Miller Drive™ SuperSOT™-6 UHC Fairchild Semiconductor® MotionMax™ SuperSOT™-8 Ultra FRFET™ Motion-SPM™ SupreMOS® UniFET™ mWSaver™ SyncFET™ VCX™ **OptoHiT™** Sync-Lock™ FastvCore™ VisualMax™ **OPTOLOGIC®** FETBench™ VoltagePlus™ **OPTOPLANAR®** FlashWriter®* XST **FPS**TM * Trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCI AIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) 2. A critical component in any component of a life support, device, or are intended for surgical implant into the body or (b) support or system whose failure to perform can be reasonably expected to sustain life, and (c) whose failure to perform when properly used in cause the failure of the life support device or system, or to affect its accordance with instructions for use provided in the labeling, can be safety or effectiveness. reasonably expected to result in a significant injury of the user. ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their

parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms		
Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev 161

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ AX-CAP™* BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ DEUXPEED Dual CoolTh EcoSPARK[®] EfficientMax™ ESBC™ F Fairchild® FACT Quiet Series™ FACT FAST®

12

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: